
Automated Software Engineering, 6, 37–68 (1999)
c© 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Model Checking Complete Requirements
Specifications Using Abstraction

RAMESH BHARADWAJ ramesh@itd.nrl.navy.mil

CONSTANCE L. HEITMEYER heitmeyer@itd.nrl.navy.mil
Center for High Assurance Computer Systems (Code 5546), Naval Research Laboratory, Washington, DC 20375

Abstract. Although model checking has proven remarkably effective in detecting errors in hardware designs,
its success in the analysis of software specifications has been limited. Model checking algorithms for hardware
verification commonly use Binary Decision Diagrams (BDDs) to represent predicates involving the many Boolean
variables commonly found in hardware descriptions. Unfortunately, BDD representations may be less effective for
analyzing software specifications, which usually contain not only Booleans but variables spanning a wide range
of data types. Further, software specifications typically have huge, sometimes infinite, state spaces that cannot be
model checked directly using conventional symbolic methods. One promising but largely unexplored approach
to model checking software specifications is to apply mathematically sound abstraction methods. Such methods
extract a reduced model from the specification, thus making model checking feasible. Currently, users of model
checkers routinely analyze reduced models but often generate the models in ad hoc ways. As a result, the reduced
models may be incorrect.

This paper, an expanded version of (Bharadwaj and Heitmeyer, 1997), describes how one can model check a
complete requirements specification expressed in the SCR (Software Cost Reduction) tabular notation. Unlike
previous approaches which applied model checking to mode transition tables with Boolean variables, we use model
checking to analyze properties of a complete SCR specification with variables ranging over many data types. The
paper also describes two sound and, under certain conditions, complete methods for producing abstractions from
requirements specifications. These abstractions are derived from the specification and the property to be analyzed.
Finally, the paper describes how SCR requirements specifications can be translated into the languages of Spin, an
explicit state model checker, and SMV, a symbolic model checker, and presents the results of model checking two
sample SCR specifications using our abstraction methods and the two model checkers.

Keywords: SCR, requirements specification, verification, abstraction, model checking

1. Introduction

During the last decade, model checking has proven remarkably effective for detecting er-
rors in hardware designs and protocols. Much of this success can be traced to the use
of Binary Decision Diagrams (BDDs) (Bryant, 1986, Bryant, 1992), an efficient technique
for symbolically representing Boolean formulae. Unfortunately, model checking has had
only limited success in analyzing software specifications, largely because software speci-
fications routinely contain not only Booleans but variables spanning a wide range of data
types, including integers, reals, and enumerated types. Moreover, specifications of practical
software often have enormous (in many cases infinite) state spaces, which makes the direct
model checking of these specifications infeasible.

Before practical software specifications can be analyzed efficiently using a model checker,
thestate explosion problemmust be addressed, i.e., the size of the state space to be analyzed
must be reduced. Current users of model checkers generate such reductions routinely,
but usually in ad hoc ways (Jackson, 1997): the correspondence between the reduced
models and the original specifications is based on informal, intuitive arguments. One



38 BHARADWAJ AND HEITMEYER

consequence of this informal process is that the models analyzed by model checkers are
often incorrect. For example, when Dill and his colleagues analyzed the errors detected
by the model checker Murphi, they found that valid design errors were very rare, whereas
human errors in translating the original design to the model analyzed by Murphi were
frequent (Dill et al, 1992). Hence, a serious problem is that reduced models generated
informally and by hand may not be true abstractions of the original design.

In contrast, our approach derives the abstract models systematically from the requirements
specification and the formula to be analyzed. Users of our methods need not design the
abstractions; instead, the abstractions can be derived automatically. With our approach,
analyzing a specification for errors consists of three steps. First, our abstraction methods
are used to produce an abstract model. Next, a model checker is executed to analyze the
abstract model for the property of interest. In the third step (required when the model
checker detects a violation of the property), the counterexample produced by the model
checker is translated to a corresponding counterexample in the original specification. This
last step is crucial because the user’s understanding of the system will usually be in terms
of the original specification rather than the abstract model.

Our abstraction methods are designed for specifications expressed in a tabular notation
called SCR (Software Cost Reduction). For a number of years, researchers at the Naval
Research Laboratory (NRL) have been developing formal methods based on the SCR nota-
tion to specify the requirements of computer systems (Heninger et al, 1978, Alspaugh et al,
1992). The SCR method, originally formulated to document the requirements of the Oper-
ational Flight Program (OFP) for the U.S. Navy’s A-7 aircraft, was introduced two decades
ago. Since then, many industrial organizations, including Bell Laboratories (Hester, Parnas
and Utter, 1981) Grumman (Meyers and White, 1983), and Ontario Hydro (Parnas, Asmis
and Madey, 1991), have used the SCR method to specify the software requirements of
critical systems. Recently, a version of the SCR method called CoRE (Faulk et al, 1992)
was used to document the complete requirements of Lockheed’s C-130J Operational Flight
Program (OFP) (Faulk et al, 1994). The OFP contains more than 230K lines of Ada code
(Sutton, 1997), thus demonstrating the scalability of SCR.

We have developed a formal state machine model to define the SCR semantics (Heit-
meyer, Jeffords and Labaw, 1999, Heitmeyer, Jeffords, and Labaw, 1996) and a set of
formal techniques and software tools to analyze requirements specifications in the SCR
notation (Heitmeyer et al, 1995, Heitmeyer, Jeffords and Labaw, 1996, Heitmeyer, Kirby
and Labaw, 1997, Heitmeyer et al, 1998). The tools include aspecification editorfor cre-
ating and modifying a requirements specification, aconsistency checkerwhich checks the
specification for well-formedness (e.g., syntax and type correctness, no missing cases, no
circular definitions, and no unwanted nondeterminism), and asimulatorfor symbolically
executing the specification to ensure that it captures the specifier’s intent. Recently, we
added a model checking capability to the toolset. Once an SCR requirements specification
is developed and refined using our tools, the user can invoke the explicit state model checker
Spin (Holzmann, 1997) within the toolset to analyze the specification for application prop-
erties. To make model checking feasible, the user can apply our abstraction methods to the
specification prior to invoking Spin.

Recently, the practical utility of the SCR methods and tools for detecting errors in soft-
ware specifications has been demonstrated in four substantial pilot projects. In one project,



MODEL CHECKING 39

researchers at NASA’s IV&V Facility used the SCR consistency checker to detect several
errors in the prose requirements specification of software for the International Space Sta-
tion (Easterbrook and Callahan, 1997). In another project, engineers at Rockwell-Collins
used the specification editor, the consistency checker, and the simulator to detect 24 er-
rors, many of them serious, in the requirements specification of an example flight guidance
system (Miller, 1998). In a third project, researchers at JPL (Jet Propulsion Laboratory)
used the SCR tools to analyze specifications of two components of NASA’s Deep Space-1
spacecraft (Lutz and Shaw, 1997); these components are designed to reduce the likelihood
that a single fault can lead to total or partial loss of a spacecraft’s functions or mission-
critical data. In the fourth project, our group at NRL used the SCR tools along with the
newly integrated model checker to expose several errors, including a safety violation, in
a contractor-produced specification of a Weapons Control Panel of a U.S. military system
(Heitmeyer, Kirby and Labaw, 1998, Heitmeyer et al, 1998).

An early application of model checking to SCR requirements specifications was re-
ported in 1993 by Atlee and Gannon, who used the model checker MCB (Clarke, Emer-
son and Sistla, 1986) to analyze properties of individual mode transition tables taken
from SCR specifications (Atlee and Gannon, 1993). More recently, Sreemani and Atlee
(Sreemani and Atlee, 1996) used the symbolic model checker SMV (McMillan, 1993) to
determine whether the mode transition tables in the original A-7 requirements document
satisfied assertions about combinations of modes. The latter experiment demonstrates that
model checking can analyze software requirements specifications of moderate size.

A major goal of our work is to generalize and extend some aspects of the earlier techniques
for model checking SCR requirements specifications. While the techniques of Atlee et al.
are designed to analyze properties of mode transition tables with Boolean input variables,
the approach we describe can be used to analyze properties of a complete SCR specification:
The properties to be analyzed can containanyvariable in the specification, and we allow
variables to range over varied domains, such as integer subranges, enumerated values, and
infinite subranges of the real numbers.

This paper makes the following contributions to the model checking of software specifi-
cations:

• In Section 3, a method is described for model checking complete SCR specifications
rather than individual mode transition tables. The variables in the specification can
have varied types—e.g., Boolean, enumerated, integer, or real.

• In Section 4, two methods are presented for deriving abstractions from SCR specifica-
tions. These abstractions are derived automatically from the property to be analyzed
and the SCR specification.

• In Section 5, methods are presented for translating an SCR specification into both
Promela, the language of Spin, and the language of SMV.

Finally, Section 6 summarizes the results of our experiments with Spin and SMV, Section
7 discusses related work, and Section 8 describes our ongoing and future work.



40 BHARADWAJ AND HEITMEYER

2. Background

2.1. SCR Requirements Model

An SCR requirements specification describes both the system environnment, which is non-
deterministic, and the required system behavior, which is usually deterministic (Heitmeyer,
Jeffords and Labaw, 1996, Heitmeyer, Jeffords and Labaw, 1999). The system environ-
ment containsmonitored quantities, which are environmental quantities that the system
monitors, andcontrolled quantities, environmental quantities that the system controls. The
SCR model represents the environmental quantities asmonitoredandcontrolled variables.
The environment nondeterministically produces a sequence of input events, where aninput
eventsignals a change in some monitored quantity. The system, which is represented in
our model as a state machine, begins execution in some initial state and responds to each
input event in turn by changing state and by possibly producing one or more system outputs,
where asystem outputis a change in a controlled quantity. In SCR, we assume that the
system behavior is synchronous (similar to Esterel’s Synchrony Hypothesis (Berry, 1992)):
the system completely processes one input event before processing the next input event.

In SCR, the required system behavior is described by NAT and REQ, two relations of
the Parnas-Madey Four Variable Model (Parnas and Madey, 1995). NAT describes the
natural constraints on the system behavior, such as constraints imposed by physical laws
and the system environment. REQ describes the required relation between the monitored
and the controlled quantities that the system must maintain. To specify REQ concisely,
SCR specifications use two types of auxiliary variables,mode classes, whose values are
calledsystem modes(or simplymodes), andterms. In many cases, mode classes and terms
capture historical information.

In our requirements model, a systemΣ is represented as a 4-tuple,Σ = (S, S0, E
m, T ),

whereS is the set of states,S0 ⊆ S is the initial state set,Em is the set of input events, and
T is the transform describing the allowed state transitions (Heitmeyer, Jeffords and Labaw,
1999). In the initial version of our formal model, the transformT is deterministic, i.e., a
function that maps an input event and the current state to a new state. The transformT is
the composition of smaller functions, calledtable functions, which are derived from the
tables in an SCR requirements specification. Our formal model requires the information in
each table to satisfy certain properties. These properties guarantee that each table describes
a total function.

A variable is any monitored or controlled variable, mode class, or term. The SCR
requirements model includes a setRF = {r1, r2, . . . , rn} containing the names of all
variables in a given specification and a function TY which maps each variable to the set of
its legal values. In the model, astates is a function that maps each variable inRF to its
value, aconditionis a predicate defined on a system state, and aneventis a predicate defined
on two system states that differ in the value of at least one variable. When the value of a
variable changes, we say that an event “occurs”. The notation “@T(c) WHEN d” denotes a
conditioned event, defined as

@T(c) WHEN d
def= ¬c ∧ c′ ∧ d,



MODEL CHECKING 41

where the unprimed conditionsc andd are evaluated in the “old” (or “current”) state, and
the primed conditionc′ is evaluated in the “new” (or “next”) state.

To compute the new state, the transformT uses the values of variables in both the old
state and the new state. To describe the variables on which a given variable “directly
depends” in the new state, we definedependency relationsDnew,Dold, andD on RF×RF.
For variablesri and rj , the pair(ri, rj) ∈ Dnew if r′j is a parameter of the function
definingr′i; the pair(ri, rj) ∈ Dold if rj is a parameter of the function definingr′i; and
D = Dnew ∪ Dold.1 To avoid circular definitions, we requireDnew to define a partial
order. Because they depend only on changes in the environment, the monitored variables
are first in the partial order. Because they can depend on any monitored variable, term,
or mode class, the controlled variables come last in the partial order. The mode classes
and terms come between the monitored and controlled variables. The assumptions that
the table functions are total and that the variables in RF are partially ordered guarantee
that the transformT is a function (at most one new system state is defined) andwell-
defined(for each enabled input event, at least one new system state is completely defined)
(Heitmeyer, Jeffords and Labaw, 1996, Heitmeyer, Jeffords and Labaw, 1999).

2.2. Types and Dependency Sets

To illustrate the SCR constructs, we consider a simplified specification of a control system
for a nuclear power plant. This safety injection system injects coolant into the reactor
core under certain conditions (Courtois and Parnas, 1993). Appendix A.1 contains a prose
description of the behavior of this system, three tables taken from an SCR specification of
the required system behavior, and the functions that can be derived from the tables using
our formal model. In the example system, the set of variable namesRF contains the three
monitored variablesBlock, Reset, andWaterPres, the mode classPressure, the term
Overridden, and the controlled variableSafetyInjection. The type definitions are

TY( Block) = { On, Off}
TY( Reset) = { On, Off}
TY( SafetyInjection) = { On, Off}
TY( Pressure) = { TooLow, Permitted, High}
TY( Overridden) = { true, false}
TY( WaterPres) = {0, 1, 2, . . . , 2000}

The new state dependency relationDnew for the example system is

{ ( SafetyInjection, Pressure),
( SafetyInjection, Overridden),
( Pressure, WaterPres), ( Overridden, Pressure),
( Overridden, Block), ( Overridden, Reset) }.

The partial order defined byDnew is

< (Block, Reset, WaterPres), Pressure, Overridden, SafetyInjection > .



42 BHARADWAJ AND HEITMEYER

2.3. Models of the Monitored Variables

As noted above, the system behavior described by our model has a nondeterministic part
and a deterministic part. While the transformT is deterministic, the input events, which are
produced by the environment, are nondeterministic. The monitored variables involved in the
input events may each be represented as state machines with an initial state, a set of possible
states (defined by the function TY), and a next-state relation. For example, the monitored
variablesBlock andReset in the sample system both have{Off, On} as the set of possible
states and the set{(Off, On), (On, Off)} as the next-state relation; the initial state ofBlock
is Off and ofReset is On. One possible model of the monitored variableWaterPres has
an initial state of 14, possible values defined by TY(WaterPres) = {0, 1, 2, . . . , 2000},
and a next-state relationτwp, which allowsWaterPres to change by at most 10 units from
one state to the next, i.e.,

τwp = {(x, x′) : 1 ≤ |x′ − x| ≤ 10, 0 ≤ x ≤ 2000, 0 ≤ x′ ≤ 2000}. (1)

An important assumption of our model, the One Input Assumption, states that only one
monitored variable changes at each state transition. Using the above models of the monitored
variables, we can show that when the sample system is in its initial state, all of the follow-
ing input events are enabled: @T(Block=On), @T(Reset=Off), and @T(WaterPres=x),
where4 ≤ x ≤ 24 andx 6= 14. By the One Input Assumption, exactly one of these input
events can occur and thereby trigger the next state transition.

3. Verifying SCR Specifications

This section describes our use of model checking for verification and error detection. By
verification, we mean the process of establishing logical properties of an SCR specifica-
tion. We specify the properties as logical formulae. This paper focuses on a class of
properties known asinvariants. Each invariant may be either astate invariant, a prop-
erty of every reachable states ∈ S, or a transition invariant, a property of every pair
of reachable states(s, s′), wheres, s′ ∈ S and there exists an input evente ∈ Em

enabled ins such thatT (e, s) = s′. We focus on state and transition invariants be-
cause they are the properties most commonly found in specifications of practical sys-
tems we have studied (e.g., the A-7 OFP (Alspaugh et al, 1992), Kirby’s cruise control
system (Kirby, 1987), and, most recently, a safety-critical component of a military sys-
tem (Heitmeyer, Kirby and Labaw, 1998, Heitmeyer et al, 1998)).

In the following, we assume that a given SCR specification satisfies application-independ-
ent properties—that is, the specification is type correct, the table functions derived from the
specification are total functions, etc. Such properties can be established using our toolset.
For details of how these checks are performed, see (Heitmeyer, Jeffords and Labaw, 1996,
Heitmeyer, Kirby and Labaw, 1997).



MODEL CHECKING 43

3.1. Sample Properties

To demonstrate the properties we would like to establish, we consider the following prop-
erties for the safety injection specification:

1. Reset = On ∧ Pressure 6= High ⇒ ¬Overridden

2. Reset = On ∧ Pressure = TooLow ⇒ SafetyInjection = On

3. Block = Off ∧ Pressure = TooLow ⇒ SafetyInjection = On

4. @T(Pressure = TooLow) WHEN Block = Off ⇒ SafetyInjection′ = On

The first three properties are state invariants. The fourth property is a transition invariant,
which states, “If Pressure becomesTooLow in the new state andBlock is Off in the old
state, thenSafetyInjection is On in the new state.”

3.2. Fixpoint Computation

To establish a formulaq as a state invariant (transition invariant) of a state machine, we need
to show thatq holds in every reachable state (every reachable transition) of the machine.
We do this by starting from the initial state and repeatedly computing the new states until a
fixpoint is reached, i.e., a point at which all the new states have been generated in previous
iterations. To compute the possible new states given a current state, we need representations
of the transformT and of the input events that trigger the state transitions.

3.2.1. Conditional AssignmentWe associate with each variableri in RF a conditional
assignment of the form:

if
2 gi,1 → ri := vi,1
2 gi,2 → ri := vi,2

...
2 gi,ni → ri := vi,ni

fi

Here,gi,1, gi,2, . . . , gi,ni are Boolean expressions (guards) andvi,1, vi,2, . . . , vi,ni are ex-
pressions that are type compatible with variableri. We define the semantics of a conditional
assignment along the lines of the enumerated assignment of UNITY (Chandy and Misra,
1988). To represent the functions and relations in SCR specifications, we allow the expres-
sionsgi,1, gi,2, . . . , gi,ni andvi,1, vi,2, . . . , vi,ni to refer to both “old” and “new” values of
variables, provided that the “new” references are not circular.

First, we consider the conditional assignments for twodependentvariables in the control
system specification: the controlled variableSafetyInjection, which is defined by a
condition table, and the termOverridden, which is defined by an event table. Appendix
A.1 contains the condition table forSafetyInjection, Table A.3, and the function derived



44 BHARADWAJ AND HEITMEYER

from Table A.3. Based on this function, the conditional assignment forSafetyInjection
is defined by

if
2 (Pressure=High) OR (Pressure=TooLow)

-> SafetyInjection := Off
2 (Pressure=TooLow) AND (Overridden = true)

-> SafetyInjection := Off
2 (Pressure=TooLow) AND (Overridden = false)

-> SafetyInjection := On
fi

The event table for the termOverridden appears in Appendix A.1 as Table A.2. The
function derived from Table A.2 also appears in Appendix A.1. Based on this function, the
conditional assignment forOverridden is defined by

if
2 @T(Block=On) AND (Pressure=TooLow) AND

(Reset=Off) -> Overridden := true
2 @T(Block=On) AND (Pressure=Permitted) AND

(Reset=Off) -> Overridden := true
2 @T(Reset=On) AND (Pressure=TooLow)

-> Overridden := false
2 @T(Reset=On) AND (Pressure=Permitted)

-> Overridden := false
2 @T(Pressure=High) -> Overridden := false
2 @T(Pressure=Permitted OR Pressure=TooLow)

-> Overridden := false
fi

The conditional assignment for the mode classPressure is expressed in a similar fashion.
At each transition, either one guard or no guard of the conditional assignment for a

dependent variable will be true. The properties of condition tables and event tables (see
Appendix A.1) guarantee this. In the conditional assignment derived from a condition table,
exactly one guard will be true at each transition. In the conditional assignment derived from
an event table, either one guard or no guard is true at each transition. If one guard is true,
then the assignment associated with that guard is selected; if no guard is true, then the
variable value is left unchanged.

Next, we consider the conditional assignments for the monitored variables. In the simple
control system, the conditional assignment for the monitored variableBlock is defined by

if
2 (Block=Off) -> Block := On
2 (Block=On) -> Block := Off

fi

This conditional assignment states that ifBlock is Off in the current state, it is enabled
to change toOn in the new state, whereas ifBlock is On in the current state, it is enabled



MODEL CHECKING 45

to change toOff in the new state. Conditional assignments for the monitored variables
Reset andWaterPres can be expressed in a similar fashion. Note thatBlock, like Reset,
is enabled to change in only one way at a given transition, whereasWaterPres is enabled
to change in many ways. Thus, for each monitored variable, one or more guards of the
corresponding conditional assignment may be true at a given transition, and each assignment
associated with a true guard is enabled.

3.2.2. Computing the New StateGiven a current states and the conditional assign-
ments for all monitored variables, we can determine the set of input events that are enabled
in s by evaluating each guard. Because the One Input Assumption allows only a single
input event to occur at each transition, one of the enabled input eventse is selected non-
deterministically. Thus, in the control system example, exactly one of the three monitored
variables (Block, Reset, or WaterPres) changes at each state transition.

The selected input evente and the current states determine the new states′. In the new
states′, the values of the monitored variables are determined solely by the input evente; the
values of the dependent variables are computed from the conditional assignments for these
variables. The partial order determines the sequence in which the conditional assignments
for dependent variables are evaluated. For each dependent variable, either one guard of the
corresponding conditional assignment is true and the assignment associated with that guard
is executed, or no guard is true and the variable value is left unchanged.

4. Two Abstraction Methods

In practical software systems, the number of reachable states is usually very large in re-
lation to their logical representation. Hence, for realistic software specifications, most
fixpoint computations (see Section 3.2) may fail to terminate because they run out of
memory. Several techniques have been proposed to combat state explosion in model
checking. One approach proposed by Clarke and his colleagues in 1994 uses abstrac-
tion (Clarke, Grumberg and Long, 1994). Although abstraction could theoretically reduce
a huge (and even infinite) state space to a much smaller state space, practical yet sound
ways of deriving abstractions from software specifications have not emerged. In fact, this
reliance on user ingenuity has led some to conclude that, at least in some contexts, the use of
abstraction in model checking is impractical (see, e.g., (Jackson, Jha and Damon, 1994)).

Below, we describe two methods for deriving abstractions from SCR requirements speci-
fications based on the formula to be analyzed. Both methods are practical: Neither requires
ingenuity on the user’s part, and each derives a smaller, more abstract model automatically.
Further, each method systematizes techniques that current users of model checkers routinely
apply but in ad hoc ways.

Applying our methods eliminates certain variables and their associated tables from the full
SCR specification. Instead of model checking the full SCR specification of the state machine
Σ for the propertyq, we model check an abstract SCR machineΣA for a corresponding
propertyqA. (The abstract propertyqA is syntactically identical to propertyq, but because
it is defined over a projection of the domain over whichq is defined, we call itqA.) Given
propertyq and state machineΣ, we say thatΣA is asoundabstraction ofΣ relative toq



46 BHARADWAJ AND HEITMEYER

if qA is an invariant ofΣA implies thatq is an invariant ofΣ. Given propertyq and state
machineΣ, we say thatΣA is acompleteabstraction ofΣ relative toq if q is an invariant of
Σ implies thatqA is an invariant ofΣA. Both our abstraction methods are sound, and, with
minor restrictions on the second method, both methods are also complete. Completeness is
an especially desirable property in model checking. Because most practical specifications
are much too large to analyze completely, the most useful function of model checking
is to detect errors. Detecting an error when the abstraction is complete means that any
counterexample detected in the abstraction corresponds to a counterexample in the original
specification.

To characterize the allowed state transitions ofΣ below, we define a next-state predicate
ρ on pairs of states such thatρ(s, s′) is true iff there exists an enabled evente ∈ Em such
thatT (e, s) = s′. The predicateρ is simply a concise and abstract way of expressing the
transformT . The corresponding next-state predicate forΣA is ρA.

4.1. Abstraction Method 1: Remove Irrelevant Variables

This simple abstraction method, analogous to a technique called “program slicing” which
removes irrelevant variables in analyzing programs (Weiser, 1984), uses the set of variable
names which occur in the formula being analyzed to eliminate unneeded variables and the
tables that define them, and the state machines in the case of monitored variables, from
the analysis. To apply this method, we identify the setO ⊆ RF of variables occurring
in formula q. Then, we let setO∗ be the reflexive and transitive closure ofO under the
dependency relationD of an SCR specification for state machineΣ. It is sound to infer
the invariance ofq for Σ if qA is an invariant of the abstract machineΣA with RFA = O∗
and if the system transform ofΣA, ρA, is obtained fromρ by deleting all associated tables
(or state machines in the case of monitored variables) for variables in the setRF − RFA.
Because the setO∗ contains all the variables, including the monitored variables, upon which
the variables inq depend, this abstraction method is also complete. We always apply this
abstraction method automatically before every verification.

For example, suppose we are analyzing the invariance of property 1 in Section 3.1 for the
safety injection system. We identify the set of variablesO occurring in the formula as

O = {Pressure, Overridden, Reset}.

The reflexive and transitive closure ofO under the dependency relationD for safety injection
isO∗, which is defined by

O∗ = {Pressure, Overridden, Reset, Block, WaterPres}.

Applying this abstraction method eliminates the controlled variableSafetyInjection,
together with its table, from the specification of the state machineΣ. The reduced speci-
fication describes the abstract machineΣA. Then, given an SCR specification of the state
machineΣ and the propertyq, model checking the abstract machineΣA for propertyqA is
equivalent to model checking the original machineΣ for propertyq (in this case, property
1).

Applying this method can significantly reduce the size of the state space to be model
checked. Suppose that variableri can be eliminated by this abstraction method and that the



MODEL CHECKING 47

cardinality ofri’s type set iski. Then, the size of the state space that needs to be analyzed
can be reduced by as much as a factor ofki. If ki is large, the amount of memory required
to model checkΣA may be considerably smaller than the amount of memory needed to
model checkΣ. Further, in many cases, many variables may be eliminated by this method
and hence the savings in memory can be considerable, especially if some of the variables
have large type sets.

4.2. Abstraction Method 2: Remove Detailed Monitored Variables

Suppose thatr is a monitored variable that does not appear in the formulaq, thatr̂ depends
directly only onr, and that̂r is the only variable that directly depends onr. We define the
set of variables of the abstract machine asRFA = RF − {r}. That is, we simply remove
r from the set of variables. InΣA, the dependence of̂r on r is eliminated by treatinĝr
as a monitored variable. The initial state(s), the set of possible states, and the next-state
relation for the new monitored variable can be computed fromr̂’s initial state, the table in
Σ definingr̂, and the next-state relation ofr. We can generalize this method to eliminate
many input variablesr1, r2, . . . , rm fromRF . This reduction can be performed ifr̂ is the
only variable that depends onr1, r2, . . . , rm; if r̂ depends directly only onr1, r2,...,rm; and
if none of the variablesr1, r2, . . . , rm appear inq.

To illustrate this abstraction method, we consider the specification of the safety injection
system. The root cause of state explosion when model checking this specification is the
monitored variableWaterPres. We therefore wish to eliminateWaterPres from the analy-
sis. Studying the specification of the safety injection system (see Appendix A.1) reveals that
WaterPres only appears in Table A.1, the table defining the mode classPressure. Since
WaterPres does not occur in any of the properties 1-4, nor in the tables for the variables
Overridden andSafetyInjection, we may deleteWaterPres and the table for variable
Pressure when model checking properties 1-4. In constructingΣA, we definePressure
as a monitored variable with initial stateTooLow and the set{TooLow, Permitted, High}
as the possible states. The next-state relation forPressure, namely,

{(TooLow, Permitted), (High, Permitted), (Permitted, High), (Permitted, TooLow)},

can be computed from the table definingPressureand the next-state relation ofWaterPres.
In this application of Abstraction Method 2, the values of the detailed variabler are

organized into equivalence classes by the abstract variabler̂. In the safety injection example,
we can define a functionh that maps the type set ofWaterPresonto the type set ofPressure
in such a way that the values ofh(WaterPres) andPressure are equal in every state. The
mappingh, which is from the set{0, 1, 2, . . . , 2000} onto the set{TooLow, Permitted,
High}, is defined by

h(WaterPres) =

 TooLow if WaterPres < Low
Permitted if WaterPres ≥ Low ∧ WaterPres < Permit
High if WaterPres ≥ Permit

(The constantsLow andPermit are defined in Appendix A.1.) The functionh determines
a partition on the values ofWaterPres into three equivalence classes, one corresponding



48 BHARADWAJ AND HEITMEYER

to each of the three possible values ofPressure. More generally,h determines a partition
on the set of states: two statess ands̃ are equivalent ifh maps the value ofWaterPres in
boths ands̃ to the same value ofPressure and ifs ands̃ agree on all other variables.

Becauseq is constant on every equivalence class, it is easy to see that this abstraction
method is sound. Given some mild restrictions on the relationship between two states in
the same equivalence class, this abstraction method is also complete. A sufficient condition
for completeness is that any states in an equivalence class must be reachable in a finite
number of steps from any other states̃ in the equivalence class. In the classes of systems we
model, this condition is usually satisfied. For example, in the safety injection system, if the
abstract machineΣA is in its initial state, then the variablePressure has the valueTooLow.
Consider a step in the abstract machine triggered by a change inPressure from TooLow
to Permitted. Starting in the initial state, the original machineΣ, which can only change
WaterPres by at most 10 units from one state to the next, will require many steps (at least
89!) to reach thePermitted range. The definition ofWaterPres’s next-state relationτwp
(see (1) in Section 2.2) guarantees that the above condition is satisfied. That is, given any
two values,x andx̃, of WaterPres in the same equivalence class, it is possible in a finite
number of steps forWaterPres to transition fromx to x̃ without leaving the equivalence
class, and hence without affecting other state variables. Therefore, a transition from a state
s to any equivalent statẽs is possible in a finite number of steps (that in fact stay inside the
equivalence class ofs ands̃).

5. Model Checking SCR Specifications.

This section describes how SCR requirements specifications can be translated into the
languages of two model checkers—the explicit state model checker Spin and the symbolic
model checker SMV.

5.1. Using the Spin Verifier

Spin (Holzmann, 1991, Holzmann, 1997), an explicit state model checker, uses state explo-
ration to verify properties. Systems are described in a language calledPromela(Holzmann,
1991) and properties are expressed either inassert statements or in linear-time temporal
logic (LTL) (Manna and Pnueli, 1991). Spin has been used mostly to verify communication
protocols and hardware designs.Promela, the language of Spin, is a notation loosely based
on Dijkstra’s “guarded commands” (Dijkstra, 1976). Supported data types inPromela
includebool (Booleans),byte (short unsigned integers), andint (signed integers). Sup-
ported statements inPromela include the assignment statement, statementskip (which
does nothing), sequential composition of statements, the conditional statement, and the
iterative statement.

Translating an SCR specification toPromelaproceeds as follows. BecausePromela
does not allow expressions containing both “old” and “new” values of variables, we create
two Promelavariables for each variable in the SCR specification and call these the “old”
and “new” variables. Expressions containing the event notation@T(c) are translated into
equivalent forms involving the “old” and the “new” variables. We translate the conditional
assignment for each SCR table into aPromelaconditional statement, which computes



MODEL CHECKING 49

the value of the “new” variable at each step. The conditional statements are executed
sequentially, in a predetermined order consistent with the partial order induced by the
new state dependency relation of the SCR specification. After all conditional assignments
for table functions are executed and new values assigned to all “new” variables, all “old”
variables are assigned their corresponding “new” values.

Further, we perform an optimization based on the fact that the system transform of an
SCR specification is a function. This ensures that all conditional statements for variables
other than the monitored variables aredeterministic. Therefore, once we have (nondeter-
ministically) selected an input event, we may compute the new state in a single step. We
specify this inPromelaby enclosing all statements which compute the values of the mode
variables, the terms, and the controlled variables in ad step (deterministic step) construct.
This ensures that, for each input event, only one state (i.e., the new state) is entered into the
hash table which stores the reachable states.

To generatePromelacode corresponding to input events, we generate a nondeterministic
conditional statement for each monitored variable, based on the conditional assignment for
that variable (see Section 3.2.1). We build in the One Input Assumption by embedding
all such statements in a single (nondeterministic) conditional statement. Appendix A.2
presents thePromelacode generated by the SCR* toolset (edited to enhance readability)
for the safety injection example.

To express a state invariant in Spin, we embed the invariant in aPromelaassertstatement.
Then, Spin checks the truth of the invariant in the initial state and in each generated “new”
state. To denote a transition invariant, one could express the invariant in LTL and invoke
the built-in translator of Spin to construct an equivalentnever automaton. Since an SCR
variable’s “new” and “old” values are explicitly assigned to twoPromelavariables, we
avoid this automaton construction for transition invariants; instead, we check them directly
in anassert statement. An advantage of our approach is that in Spin checking invariants
is computationally more efficient than checking properties expressed asnever automata.

To combat state explosion, conventional partial order reduction methods avoid the ex-
ploration of redundant interleavings by computing and keeping track of information about
redundant interleavingsduring state exploration (Valmari, 1990, Godefroid, 1990, Holz-
mann and Peled, 1994). In our approach, which relies on Spin’sd step construct, it is
sufficient to evaluate the new state usingonly onepredetermined interleaving consistent
with the partial order induced by the new state dependency relation. This approach can
be applied to all deterministic SCR specifications. In model checking a deterministic SCR
specification, enabling Spin’s partial order reduction algorithm will never reduce the space
requirement and may actuallyincreasethe required analysis time due to additional overhead.

5.2. Using the SMV Model Checker

SMV (McMillan, 1993) is a tool for verifying properties of system descriptions expressed
in a special-purpose language (also called SMV). Properties are expressed in the branching
time temporal logic CTL. A system is described in SMV as a set of initial states and a
transition (next-state) relation. Users may either use predicate logic or a more restricted
description language to specify the transition relation. Although predicate logic provides
considerable flexibility, its use can lead to inconsistency—if a formula specifying the transi-



50 BHARADWAJ AND HEITMEYER

tion relation is a logical contradiction, many properties will be trivially true. Using only the
restricted description language of SMV, which has a parallel assignment syntax similar to
the notation of SCR, avoids this problem. For specifications in the restricted language, SMV
checks for multiple parallel assignments to a variable, circular definitions, and type errors.
These checks help ensure that all specifications in the restricted syntax are consistent.

Our translation of SCR specifications into SMV, which uses the restricted language of
SMV, is similar to that of Atlee et al. (Atlee and Buckley, 1996) but differs in two important
respects. First, as mentioned above, we translate “complete” SCR specifications, that
is, specifications which include monitored and controlled variables, mode classes, and
terms, any of which may be of type Boolean, an integer subrange, or an enumeration. In
contrast, Atlee et al. translate mode transition tables with Boolean input variables into SMV.
Second, to check properties on two states, Atlee et al. introduce additional SMV variables
for each SCR state variable whose old value is referenced in some transition invariant. In
contrast, we encode transition invariants directly into CTL, using the algorithm of Jeffords
(Jeffords, 1997). Because we do not duplicate these state variables in the SMV model (as
we do inPromela), our method can potentially reduce the memory requirement for model
checking by an exponential factor.

To translate an SCR specification into SMV, we express the conditional assignment cor-
responding to each table as an SMVcase statement. This computes the value of the
corresponding variable in the “new” state. Because the system transformT of an SCR
specification is deterministic, the guards of all conditional assignments corresponding to
system variables (i.e., variables other than monitored variables) are mutually disjoint. For
these variables, it is straightforward to translate a conditional assignment into an SMV
case statement. Note that in SMV a primed occurrencex′ of a variablex is denoted by
next(x). Thus, the conditional assignment forOverridden is translated into the following
SMV construct:

next(Overridden) :=
case

(next(Block) = On & Block = Off &
Pressure = TooLow & Reset = Off) |
(next(Block) = On & Block = Off &
Pressure = Permitted & Reset = Off) : TRUE;
(next(Reset) = On & Reset = Off &
Pressure = TooLow) |
(next(Reset) = On & Reset = Off &
Pressure = Permitted) |
(next(Pressure) = High & !(Pressure = High)) |
((next(Pressure) = Permitted | next(Pressure) = TooLow) &
!(Pressure = Permitted | Pressure = TooLow)) : FALSE;
1: Overridden; -- This means "otherwise Overridden"

esac;

Unfortunately, when more than one guard is true, the semantics of the SMVcase state-
ment differs from that of the enumerated assignment statement discussed in Section 3.2.1.
In SMV, the first assignment whose guard is true is chosen, rather than a nondeterministic



MODEL CHECKING 51

choice of any one of the assignments whose guards are true. Therefore, when the guards of
a conditional assignment are not mutually disjoint, a straightforward translation would be
incorrect. To solve this problem, we model nondeterministic choice by an explicit assign-
ment of an arbitrary element among those in a set, using the SMV syntax of set assignment
to denote this operation. For example, in the safety injection system, applying Abstraction
Method 2 eliminates the monitored variableWaterPres (see Section 4.2). The next step is
to define the next-state relation of the mode classPressure in SMV. This relation may be
expressed using SMV’s set assignment construct as follows:

next(Pressure) :=
case

Pressure = Permitted : {TooLow, High};
Pressure = TooLow : Permitted;
Pressure = High : Permitted;

esac;

We generate a nondeterministic SMV assignment that corresponds to the conditional as-
signment of each monitored variable and a deterministic assignment for each term, mode
class, and controlled variable. Unlike Spin, which executes conditional assignments se-
quentially, SMV performs all assignments in parallel, i.e., in “one step”. Therefore, unlike
in thePromelamodel, the assignments in SMV may be ordered arbitrarily.

Unlike the translation toPromela, where we build the One Input Assumption and other
restrictions imposed by NAT into the assignments, we encode NAT restrictions in SMV
as predicates in a “TRANS” section. For example, the encoding of the state machine for
WaterPres has two parts—the assignment statement forWaterPres allowsanyvalue from
its domain for the new state (irrespective of WaterPres in the old state), while the predicate
in theTRANS section restricts this change to be at most10 units. Appendix A.3 presents the
SMV code generated by this method for the safety injection example.

5.3. Spin vs SMV

Discussions about the relative merits of explicit state (also called concrete) model checkers,
such as Spin, and “symbolic” model checkers, such as SMV, have sparked considerable
controversy. Explicit model checkers compute the set of reachable states by enumeration
(i.e., by “running the model”), whereas symbolic model checkers execute the model sym-
bolically by representing the set of reachable states as a logical formula using a BDD. The
state spaces of some hardware designs with a certain regularity in their structure have been
shown to have very compact BDD representations. For such systems, the space requirement
using BDDs has a linear, rather than an exponential, relationship with the number of state
variables in the model. However, BDDs may “blow up” (i.e., have an exponential memory
requirement) when the models are more irregular, which is often the case in software spec-
ifications. Explicit state model checkers sometimes do better than BDDs on descriptions
of communication protocols and control systems. This is because the space requirement of
explicit state model checking is proportional not to the number ofpossiblestates but to the
number ofreachablestates, which are far fewer for such systems. Not surprisingly, there-



52 BHARADWAJ AND HEITMEYER

fore, algorithms for explicit state enumeration sometimes require less space than symbolic
algorithms when model checking SCR specifications.

We note that it is possible to construct an explicit state model checker with an exponentially
smaller memory requirement than the memory required by Spin in our experiments. In using
Spin, we were forced to declare twoPromelavariables for each SCR variable with a potential
increase in space requirements by an exponential factor. (This limitation ofPromelahas
nothing to do with the explicit state enumeration algorithms of Spin.) Because the SMV
language allows references to both the “old” and “new” values of a variable, our SMV models
avoided this problem. However, in SMV, there is a potential for exponential BDD blowups
for specifications containing integer variables (as in our analysis of the original Safety
Injection specification, which is presented below) because SMV does not handle integer
variables optimally (Chan et al, 1998). As Chan et al. show (Chan et al, 1998), a more
optimal encoding for integer variables in SMV is possible and may produce exponential
reductions in memory requirements.

Symbolic model checkers for CTL, such as SMV, provide counterexamples for transition
invariants in the form of a linear trace (as opposed to a branching trace). Such counterexam-
ples may be difficult to interpret because the property is expressed in CTL, a branching time
logic. However, symbolic model checkers have a distinct advantage over state enumeration
in one respect: Expressing constraints (such as environmental restrictions on monitored
variables) symbolically as logical formulae is more convenient than representing them as
state machines. It is natural to allow, and efficient to implement, constraints expressed as
logical formulae in symbolic model checkers. SMV allows users to intermix predicate logic
with the more restrictive descriptive language. However, this feature should be used with
caution because it permits the specification of logical contradictions.

Another advantage of SMV over Spin is that, when a property violation is detected,
SMV is guaranteed to produce the shortest possible counterexample. Spin provides an
algorithm that finds short counterexamples, but the algorithm does not always find the
shortest one. This is because the symbolic model checking algorithms of SMV perform a
breadth-first search of the state space in contrast to the depth-first search performed by the
algorithms of Spin. Explicit state model checkers that perform a breadth-first search do
exist; for example, the explicit state model checker Murphi (Dill et al, 1992) implements
a breadth-first search. However, algorithms used to generate counterexamples in symbolic
model checking and explicit state enumeration by breadth-first search are considerably more
expensive and complex than the corresponding algorithm for explicit state enumeration by
depth-first search.

For many practical problems, a complete search of the state space (using either explicit
state or symbolic methods) is often infeasible. In such situations, model checking remains
useful forerror detection. In our experiments, we found that explicit state methods were
computationally less expensive than symbolic model checking for error detection. The next
section provides details.



MODEL CHECKING 53

6. Experimental Results

This section presents and discusses some results of our experiments with Spin and SMV. To
evaluate the abstraction methods described above, we have applied them to several small
examples and to a more realistic SCR specification.

For the safety injection specification (SIS), we were able to verify properties 1 and 2.
We were also able to show that properties 3 and 4 arenot invariants of the specification.
One of the major problems in using model checking to evaluate abstract models is that
counterexamples, which are generated in terms of the abstractions, are often hard to interpret
(see, e.g., (Probst, 1996)). We had little difficulty interpreting counterexamples generated
for abstractions of SCR specifications, because they are expressed in terms of variables
in the original specification. Also, because our abstraction methods are sound and, under
certain conditions, complete, a counterexample for a property will be generated for the
abstract machine if and only if the property does not hold for the original machine. We
view these as important advantages of our abstractions.

We recently applied our abstraction methods to a simplified subset of the bomb release
requirements of a U.S. Navy attack aircraft (Alspaugh et al, 1992). The SCR requirements
specification of this system describes conditions under which the aircraft’s OFP is required
to issue a bomb release pulse. This specification, calledBombrel, contains several seeded
errors. In addition to uncovering all the seeded errors with other tools in our toolset, we also
established by model checking that the original formulation of a presumed state invariant,
“The aircraft should not drop a bomb unless the pilot has pressed release enable” (property
P in Table 2), does not hold for the corrected SCR specification. In consultation with
Kirby, the creator of the specification, we reformulated the property as a transition invariant
(propertyQ in Table 1) and verified the restated property using both Spin and SMV.

We ran these experiments on a lightly loaded167 MHz Sparc Ultra-1 with130 MB of
RAM. We used Spin Version 2.9.7 of April 18, 1997, and SMV r2.4 of December 16,
1994, in our experiments. Our tool generated thePromelacode automatically from the
SCR requirements specifications. The first abstraction method was applied automatically,
while the second method was applied manually. The abstract models produced were then
analyzed automatically by the toolset using Spin. Generation and analysis of the SMV
model were carried out manually.

Tables 1 and 2 present some of our results. In the tables, AM1 and AM2 refer to the two
abstraction methods and the symbol ‘∞’ means that the corresponding model checker ran
out of memory before its evaluation of the given property was complete.

Table 1 shows that Spin does better than SMV (in terms of space and time requirements)
in analyzing the complete SIS specification. However, SMV does somewhat better than
Spin on the abstraction. As we expected, both Spin and SMV consume much less space
and time on the abstraction than on the complete specification. ForBombrel, both Spin
and SMV ran out of space during model checking. As in the SIS example, both Spin and
SMV are able to model check an abstraction ofBombrel, and SMV does slightly better
than Spin.

Table 2 shows that our abstraction methods dramatically reduce the time and space re-
quirements for counterexample generation. Moreover, the generated counterexamples are
significantly shorter, and therefore more easily understood. The use of abstraction did



54 BHARADWAJ AND HEITMEYER

Table 1.Verifying SCR Specifications with Model Checkers.

Verifying Properties With Spin

Specification Property AM1 AM2 States Time Memory

SIS 1 or 2 459, 084 10s 16 MB
SIS 1

√
459, 084 10s 16 MB

SIS 1 or 2
√

160 0s 3.1 MB
SIS 1

√ √
160 0s 3.1 MB

Bombrel Q ∞ − −
Bombrel Q √

148, 354 2s 6.2 MB

Verifying Properties With SMV

Specification Property AM1 AM2 BDD Nodes Time Memory

SIS 1 or 2 44,653 309s 34 MB
SIS 1

√
44,648 308s 34 MB

SIS 1 or 2
√

314 0s 0.9 MB
SIS 1

√ √
251 0s 0.9 MB

Bombrel Q ∞ − −
Bombrel Q √

1, 912 0s 0.9 MB

Table 2.Detecting Errors in SCR Specifications With Model Checking.

Generating Counterexamples With Spin

Specification Property AM1 AM2 Length Time Memory

SIS 3 6 0.1s 2.5 MB
SIS 3

√ √
6 0.1s 3.1 MB

Bombrel P 1, 383 315s 18 MB
Bombrel P √

25 1.1s 5 MB

Generating Counterexamples With SMV

Specification Property AM1 AM2 Length Time Memory

SIS 3 4 309s 34 MB
SIS 3

√ √
4 0s 0.9 MB

Bombrel P − 13 Hrs ?
Bombrel P √

7 0.3s 1 MB

not affect the performance of Spin for the SIS example but did substantially reduce the
time and space required by SMV. The results for Property3 are given in the table. For
Property4, the results are comparable. For the unabstractedBombrel specification, the
shortest counterexample produced by Spin had1, 383 states. SMV failed to terminate for
this example and therefore did not generate a counterexample. An initial run of Spin on
an abstraction ofBombrel produced a counterexample with104 states. The shortest coun-



MODEL CHECKING 55

terexample produced by Spin had25 states. After examining this counterexample, Kirby
manually shortened the counterexample to9 states. SMV, however, did better by producing
a counterexample with only7 states.

We note that, for the safety injection example, using Abstraction Method 1 to ver-
ify Property 1 has no effect on the number of states or the memory requirement. This
is not surprising since Abstraction Method 1 only eliminates a single Boolean variable
SafetyInjection; the size of the state vector (28 bytes = 24 bytes + 4 bytes overhead)
remains the same and hence the space for storing each state remains unaffected. Further,
becauseSafetyInjection is defined by a condition table,SafetyInjection is a func-
tion of the new state only. Hence, elimination of the variableSafetyInjection does not
reduce the number of reachable states.

Although Abstraction Method 1 produced negligible reductions in both the SIS spec-
ification and theBombrel specification, this method can produce substantial reductions
in larger specifications. Sizable reductions are possible because large specifications are
much more likely than small ones to have components that are largely independent of one
another. For example, in analyzing the requirements specification of a military system for
a critical safety property (Heitmeyer, Kirby and Labaw, 1998, Heitmeyer et al, 1998), we
used Abstraction Method 1 to reduce the number of variables in the analysis from over 250
to 55, a reduction of almost 80%.

7. Related Work

Our approach to model checking SCR requirements specifications is a generalization and
extension of the approach originally formulated and further developed by Atlee and her col-
leagues (Atlee and Gannon, 1993, Atlee and Buckley, 1996, Sreemani and Atlee, 1996).
The relationship between our work and Atlee’s work was described earlier. Below, we de-
scribe other work in which model checking has been applied to requirements specifications.
We also compare our approach to the use of abstraction in model checking with several other
approaches. While our objective is to develop mathematically sound abstraction methods
that can be applied automatically to requirements specifications, the major focus of other
work on abstraction has been theoretical. The most complete treatment is the very general
theory of abstraction relations formulated by Loiseaux et al. (Loiseaux et al, 1995) and ex-
tended with some modifications by Dams et al. (Dams and Gerth, 1997). Our approach is
a special case of (Loiseaux et al, 1995) in which the abstraction relation is a map.

7.1. Model Checking Requirements Specifications

In (Chan et al, 1998), Chan et al. use SMV to analyze a fragment of the TCAS II (Traffic
Alert and Collision Avoidance System) requirements specification expressed in the RSML
(Requirements State Machine Language) notation (Heimdahl and Leveson, 1996). They
define schemas for translating RSML constructs (such as events, input variables, environ-
ment assumptions, and the synchrony hypothesis) into suitable SMV constructs, just as
we do for SCR. However, unlike our translation of SCR specifications into SMV which is
semantics-preserving, the semantics of the SMV model generated by their translation may
differ from the semantics of the original RSML specification (Chan et al, 1998, p. 511). An-



56 BHARADWAJ AND HEITMEYER

other important difference between their approach and ours is that their translation involved
significant manual effort, such as modifications to SMV and the use of special-purpose
macro processors. In contrast, we use both Spin and SMV “out of the box”.

Another significant difference between the two approaches lies in the way integer variables
and constants are handled. The problem is state explosion—since the encoding in SMV
for integer variables (and operations on them) is not optimal, the BDDs blow up, even in
specifications containing just one or two integer variables. To solve this problem, Chan et
al. directly encode integer variables as BDD bits and implement addition and comparison
at the source code level by defining parameterized macros which are preprocessed using
awk scripts. In contrast, we effectively avoid the problem by applying our correctness
preserving abstraction methods to specifications containing integer variables. Because we
only model check the abstractions, the state spaces of the abstractions in our examples may
be orders of magnitude smaller than the state spaces Chan et al. analyze.

7.2. Model Checking and Abstraction

Our work on abstraction is related to earlier work on abstraction, largely theoretical, by
Clarke et al. (Clarke, Grumberg and Long, 1994), Loiseaux et al. (Loiseaux et al, 1995),
Graf and Loiseaux (Graf, 1994, Graf and Loiseaux, 1993), Dams et al. (Dams and Gerth,
1997), and Kurshan (Kurshan, 1994). Below, we describe four significant aspects of our
approach to abstraction which distinguish it from other approaches.

First, we focus on properties of single states or transition state-pairs rather than properties
of execution sequences. As stated above, we have found that the most common properties
in software requirements specifications are state and transition invariants. Expressing these
properties does not require any of the techniques useful for describing execution sequences,
such as temporal logics (e.g., CTL and CTL*), the mu-calculus, or automata that accept
languages with infinite words (Kurshan, 1994).

Second, the abstractions we apply usevariable restriction, which eliminates certain vari-
ables. Variable restriction, a special case of the data abstractions introduced by Clarke et
al., is equivalent to abstracting the data type of each eliminated variable to a single value.
Both our abstractions and those of Clarke et al. are a special case of the more general ab-
straction relations described by Loiseaux et al. (We note that, in the examples provided in
(Loiseaux et al, 1995), (Graf and Loiseaux, 1993), and (Graf, 1994), all of the abstraction
relations are in fact maps.) Although our abstractions are a proper subset of those considered
by Clarke (Clarke, Grumberg and Long, 1994), we can obtain fairly complex abstractions
by performing a sequence of our simple abstractions.

Third, we focus on abstraction with respect to a single simple state invariant or transi-
tion invariant. By contrast, in (Clarke, Grumberg and Long, 1994), (Loiseaux et al, 1995),
(Dams and Gerth, 1997), and (Kurshan, 1994), the focus is on abstractions that preserve
an entire class of properties of execution sequences derived from some set of primitive
predicates. Focusing on a single simple property offers some advantages. For one, the
size of the abstract model is generally smaller. Further, because we also focus on certain
specific abstraction methods, we are able to automate the choice and construction of ab-
stractions. In the work of others, the user must typically propose the abstraction, or at least,
the abstraction relation. Like us, at least one author, Graf (Graf, 1994), uses abstractions



MODEL CHECKING 57

tailored to single properties, but user ingenuity is needed to find the abstractions, even when
a library of abstractions and heuristics are used to aid in the search.

Finally, building and establishing the correctness (soundness or completeness) of our
abstractions is automatic and not computationally expensive. As a result, our methods do not
require the processing of the state transition graph as in (Kurshan, 1994) nor the modification
of a BDD description of the automaton as in (Clarke, Grumberg and Long, 1994). Rather,
establishing correctness and building the abstraction are done at the specification level.

We note that our two abstraction methods are related to methods proposed by Kurshan
as early as 1987 (Clarke and Kurshan, 1996). Like ours, Kurshan’s methods, which he
calls automatic localization reduction(Kurshan, 1997), remove parts of the specification
irrelevant to the property of interest.

8. Conclusions

This paper has presented an approach based on the formal requirements model defined
in (Heitmeyer, Jeffords and Labaw, 1996, Heitmeyer, Jeffords and Labaw, 1999) for model
checking complete SCR requirements specifications with a variety of variable types for state
and transition invariants, the two classes of properties commonly found in specifications of
real-world software. The paper also presented two abstraction methods that make the anal-
ysis of SCR specifications practical and techniques for translating SCR specifications into
the languages of the explicit state model checker, Spin, and the symbolic model checker,
SMV. Finally, the paper has presented some experimental results which suggest that sym-
bolic model checking does not always perform better than explicit state model checking in
detecting errors in software specifications.

We have successfully applied our abstraction methods to the specification of a safety-
critical component of a U.S. military system (Heitmeyer, Kirby and Labaw, 1998, Heitmeyer
et al, 1998). In analyzing this specification, we applied Abstraction Method 1 and developed
a third abstraction method which replaces the original type set of certain variables with a
smaller type set. For the details of this new abstraction method, see (Heitmeyer et al, 1998).
Our abstraction methods for SCR work well in practice primarily because SCR specifica-
tions, if written and organized in accordance with the SCR method,already contain many
useful abstractions. Therefore, unlike other approaches where the abstractions that make
verification feasible must be “reverse-engineered” from scratch, useful abstractions already
exist or are easy to derive (sometimes automatically) for well-written SCR specifications.

As noted above, the translation of SCR specifications into the restricted language of SMV
is being automated. The importance of automatic translation cannot be overemphasized.
Hand translation of the specifications is highly error-prone; in fact, we made some subtle
mistakes that were caught because the results of model checking using Spin, where the
translation was automatic, were inconsistent with the results of model checking using a
manual translation to SMV.

We are extending our work in model checking SCR specifications in several ways:

• We are developing additional abstraction methods.

• We are designing algorithms to implement our abstraction methods: these algorithms
automatically extract the abstractionΣA and the propertyqA from the original SCR



58 BHARADWAJ AND HEITMEYER

specification and a given propertyq. (In the new abstraction methods that we are
developing,qA may not be syntactically identical toq.) We also are investigating
the extent to which we can automatically check that the conditions for completeness
described in Section 4.2 are satisfied.

• Finally, we are developing software that will automatically translate a counterexample
produced by model checking the abstractionΣA into a corresponding counterexample
in the original specification. Currently, we perform this translation manually; whether
we can produce “natural” counterexamples in a completely automatic way is an open
question.

Our long-term goal is to combine the power of theorem proving technology with the ease
of use of model checking technology. The major problem with current theorem proving
technology, e.g., PVS (Owre et al, 1995) and ACL2 (Kaufmann and Moore, 1997), is that
applying the technology requires mathematical sophistication and theorem proving skills.
The major problem with model checking is state explosion. Clearly, theorem proving, in
many cases,automatictheorem proving, can dramatically reduce the number of states that
a model checker analyzes. Our abstraction methods are mathematically sound methods that
can dramatically reduce the state space by eliminating information irrelevant to the property
of interest and abstracting away unneeded detail. We are also exploring other automated
techniques that address the state explosion problem, including the automatic generation of
invariants (Jeffords and Heitmeyer, 1998) and the use of powerful decision procedures.

To date, our requirements model has provided a solid foundation for a suite of analysis
tools which can detect errors automatically. These tools are designed to make the cause
of detected errors understandable, thereby facilitating error correction. Such an approach
should lead to the production of high quality requirements specifications, which should in
turn produce systems that are more likely to perform as required and less likely to lead
to accidents. Such high-quality specifications should also lead to significant reductions in
software development costs.

Acknowledgments

This work was supported by the Office of Naval Research. We gratefully acknowledge
Myla Archer, who identified the conditions sufficient for completeness of the second ab-
straction method and who helped clarify the relationship between our abstraction methods
and alternative abstraction methods. Moreover, her detailed review of earlier drafts helped
us improve both the presentation and the technical content of this paper. We are also grateful
for the constructive comments of Angelo Gargantini, Ralph Jeffords, Steve Sims, and the
anonymous referees. Finally, we thank Todd Grimm and Bruce Labaw for automating the
first abstraction method and the translation of SCR specifications intoPromela.



MODEL CHECKING 59

Appendix

A.1. Specifying a Simple Control System in SCR

The system, a simplified version of a control system for safety injection (Courtois and
Parnas, 1993), monitors water pressure and injects coolant into the reactor core when the
pressure falls below some threshold. The system operator may override safety injection
by turning a “Block” switch to “On” and may reset the system after blockage by setting
a “Reset” switch to “On”. To specify the requirements of the control system, we use the
monitored variablesWaterPres, Block, andReset to denote monitored quantities and a
controlled variableSafetyInjection to denote the controlled quantity. The specification
includes a mode classPressure, a termOverridden, and several conditions and events.

The mode classPressure, an abstract model ofWaterPres, has three modes:TooLow,
Permitted, andHigh. At any given time, the system must be in one and only one of
these modes. A drop in water pressure below a constantLow causes the system to enter
modeTooLow; an increase in pressure above a larger constantPermit causes the system
to enter modeHigh. (In this example, the constantsLow andPermit have the values 900
and 1000.) Table A.1 is a mode transition table which describes the behavior of the mode
classPressure.

Old Mode Event New Mode

TooLow @T(WaterPres ≥ Low) Permitted

Permitted @T(WaterPres ≥ Permit) High

Permitted @T(WaterPres < Low) TooLow

High @T(WaterPres < Permit) Permitted

Table A.1.Mode Transition Table forPressure.

The termOverridden is true if safety injection is blocked, andfalse otherwise. Ta-
ble A.2 is an event table which specifies the behavior ofOverridden. The expression
“@T(Inmode)” in a row of an event table denotes the event “system enters the correspond-
ing mode”. For instance, the rightmost entry in the first row of Table A.2 specifies the
event “the system enters modeHigh”. In SCR specifications, each condition table

Mode Events

High False @T(Inmode)

TooLow, @T(Block=On) @T(Inmode) OR
Permitted WHEN Reset=Off @T(Reset=On)

Overridden True False

Table A.2.Event Table forOverridden.

describes constraints on the new system state. Table A.3, a condition table which describes



60 BHARADWAJ AND HEITMEYER

the controlled quantitySafetyInjection, requires that in every new system state, “If
Pressure isHigh orPermitted or if Pressure isTooLow andOverridden is true, then
SafetyInjection isOff; otherwise, it isOn”. By applying the definitions in (Heitmeyer,

Mode Conditions

High, Permitted True False

TooLow Overridden NOT Overridden

Safety Injection Off On

Table A.3.Condition Table forSafety Injection.

Jeffords and Labaw, 1996, Heitmeyer, Jeffords
and Labaw, 1999) to Tables A.1–A.3, we obtain the following table functions for the mode
classPressure, the termOverridden, and the controlled variableSafetyInjection:
Pressure′ =
F4(Pressure, WaterPres, WaterPres′} =



TooLow if Pressure = Permitted ∧ WaterPres′ < Low ∧
WaterPres 6< Low

High if Pressure = Permitted ∧ WaterPres′ ≥ Permit ∧
WaterPres 6≥ Permit

Permitted if (Pressure = TooLow ∧ WaterPres′ ≥ Low ∧
WaterPres 6≥ Low) ∨
(Pressure = High ∧ WaterPres′ < Permit ∧
WaterPres 6< Permit)

Pressure otherwise.



MODEL CHECKING 61

Overridden′ =
F5(Block, Reset, Pressure, Overridden, Block′, Reset′, Pressure′} =



true if (Block′ = On ∧ Block = Off ∧
Pressure = TooLow ∧ Reset = Off) ∨
(Block′ = On ∧ Block = Off ∧
Pressure = Permitted ∧ Reset = Off)

false if (Reset′ = On ∧ Reset = Off ∧
Pressure = TooLow) ∨
(Reset′ = On ∧ Reset = Off ∧
Pressure = Permitted) ∨
(Pressure′ = High ∧ Pressure 6= High) ∨
((Pressure′=Permitted ∨ Pressure′=TooLow) ∧
¬(Pressure=Permitted ∨ Pressure=TooLow))

Overridden otherwise

SafetyInjection =

F6(Pressure, Overridden) =

{
Off if Pressure=High ∨ Pressure=Permitted ∨

(Pressure = TooLow ∧ Overridden = true)
On if Pressure = TooLow ∧ Overridden = false

To ensure that the tables in an SCR specification define total functions, the information
in each table is required to satisfy certain properties. For example, in a condition table,
two properties are required of the conditionsci presented in each row of the table: the
disjunction of theci must be true, and the pairwise conjunction of theci must be false. In
an event table, the pairwise conjunction of the eventsei presented in each row of the table
must be false. For a complete description of the properties that tables in SCR specifications
must satisfy, see (Heitmeyer, Jeffords and Labaw, 1996).

A.2. Promelacode for safety injection

/* This file contains the PROMELA/spin version of an SCRTool specification. */

/* It is created by SCRTool and automatically fed to Xspin. */

/* However, this file was left in the file sis.spin */

/* for you to use, look at, etc. */

/*****************************/

/* numeric constants */

/*****************************/

bool TRUE = 1;

bool FALSE = 0;

#define TooLow 0

#define Permitted 1

#define High 2

#define On 0

#define Off 1

#define Low 900

#define Permit 1000



62 BHARADWAJ AND HEITMEYER

/*********************************/

/* variable declarations */

/*********************************/

byte Block = Off;

byte BlockP = Off;

bool Overridden = FALSE;

bool OverriddenP = FALSE;

byte Reset = On;

byte ResetP = On;

byte SafetyInjection = On;

byte SafetyInjectionP = On;

int WaterPres = 14;

int WaterPresP = 14;

byte Pressure = TooLow;

byte PressureP = TooLow;

/***********************/

/* init function */

/***********************/

init {

/******************************/

/* main processing loop */

/******************************/

do

::

/****************************************/

/* asserts for state invariants */

/****************************************/

d_step{

/* (Reset = On AND Pressure =/= High) => NOT Overridden */

assert((!((Reset == On) && (Pressure != High))) || !Overridden);

/* ((Reset = On) AND (Pressure = TooLow)) => (SafetyInjection = On) */

assert((!((Reset == On) && (Pressure == TooLow))) || (SafetyInjection == On));

/* ((Block = Off) AND (Pressure = TooLow)) => (SafetyInjection = On) */

assert((!((Block == Off) && (Pressure == TooLow)))||(SafetyInjectionP == On));

}

/**********************************************************************/

/* simulation of monitored variable changes; do one each pass */

/**********************************************************************/

if

::if

/* randomly select any value except the current one */

:: (Block != On) -> BlockP = On ;

:: (Block != Off) -> BlockP = Off ;

fi

::if

/* randomly select any value except the current one */

:: (Reset != On) -> ResetP = On ;

:: (Reset != Off) -> ResetP = Off ;

fi

::if

/* randomly jump to any value within the legal range of the variable */



MODEL CHECKING 63

:: ((WaterPres + 1) <= 2000) -> WaterPresP = WaterPres + 1 ;

:: ((WaterPres - 1) >= 0) -> WaterPresP = WaterPres - 1 ;

:: ((WaterPres + 2) <= 2000) -> WaterPresP = WaterPres + 2 ;

:: ((WaterPres - 2) >= 0) -> WaterPresP = WaterPres - 2 ;

:: ((WaterPres + 3) <= 2000) -> WaterPresP = WaterPres + 3 ;

:: ((WaterPres - 3) >= 0) -> WaterPresP = WaterPres - 3 ;

:: ((WaterPres + 4) <= 2000) -> WaterPresP = WaterPres + 4 ;

:: ((WaterPres - 4) >= 0) -> WaterPresP = WaterPres - 4 ;

:: ((WaterPres + 5) <= 2000) -> WaterPresP = WaterPres + 5 ;

:: ((WaterPres - 5) >= 0) -> WaterPresP = WaterPres - 5 ;

:: ((WaterPres + 6) <= 2000) -> WaterPresP = WaterPres + 6 ;

:: ((WaterPres - 6) >= 0) -> WaterPresP = WaterPres - 6 ;

:: ((WaterPres + 7) <= 2000) -> WaterPresP = WaterPres + 7 ;

:: ((WaterPres - 7) >= 0) -> WaterPresP = WaterPres - 7 ;

:: ((WaterPres + 8) <= 2000) -> WaterPresP = WaterPres + 8 ;

:: ((WaterPres - 8) >= 0) -> WaterPresP = WaterPres - 8 ;

:: ((WaterPres + 9) <= 2000) -> WaterPresP = WaterPres + 9 ;

:: ((WaterPres - 9) >= 0) -> WaterPresP = WaterPres - 9 ;

:: ((WaterPres + 10) <= 2000) -> WaterPresP = WaterPres + 10 ;

:: ((WaterPres - 10) >= 0) -> WaterPresP = WaterPres - 10 ;

fi

fi;

/***********************************************************/

/* executions of the functions in dependency order */

/***********************************************************/

/* the PROMELA version of the Pressure function */

d_step{

if

/* modes: TooLow */

/* event: @T(WaterPres >= Low) */

:: (((!(WaterPres > Low)) && ((Pressure == TooLow) &&

(!(WaterPres == Low)))) && (WaterPresP > Low))

|| (((!(WaterPres == Low)) && ((Pressure == TooLow) &&

(!(WaterPres > Low)))) && (WaterPresP == Low))

-> PressureP = Permitted;

/* modes: Permitted */

/* event: @T(WaterPres < Low) */

:: (((!(WaterPres < Low)) && (Pressure == Permitted)) && (WaterPresP < Low))

-> PressureP = TooLow;

/* modes: Permitted */

/* event: @T(WaterPres >= Permit) */

:: (((!(WaterPres > Permit)) && ((Pressure == Permitted) &&

(!(WaterPres == Permit)))) && (WaterPresP > Permit))

|| (((!(WaterPres == Permit)) && ((Pressure == Permitted) &&

(!(WaterPres > Permit)))) && (WaterPresP == Permit))

-> PressureP = High;

/* modes: High */

/* event: @T(WaterPres < Permit) */

:: (((!(WaterPres < Permit)) && (Pressure == High)) && (WaterPresP < Permit))

-> PressureP = Permitted;

:: else skip;

fi;



64 BHARADWAJ AND HEITMEYER

/* the PROMELA version of the Overridden function */

if

/* modes: TooLow, Permitted */

/* event: @T(Block = On) WHEN Reset = Off */

:: (((!(Block == On)) && (((Pressure == TooLow) ||

(Pressure == Permitted)) && (Reset == Off))) && (BlockP == On))

-> OverriddenP = TRUE;

/* modes: High */

/* event: @T(Inmode) */

:: ((!(Pressure == High)) && (PressureP == High)) -> OverriddenP = FALSE;

/* modes: TooLow, Permitted */

/* event: @T(Inmode) OR @T(Reset = On) */

:: ((!((Pressure == TooLow) || (Pressure == Permitted))) &&

((PressureP == TooLow) || (PressureP == Permitted)))

|| (((!(Reset == On)) && ((Pressure == TooLow) ||

(Pressure == Permitted))) && (ResetP == On)) -> OverriddenP = FALSE;

:: else skip;

fi;

/* the PROMELA version of the SafetyInjection function */

if

/* modes: High, Permitted */

/* condition: TRUE */

:: ((PressureP == High)||(PressureP == Permitted)) -> SafetyInjectionP = Off;

/* modes: TooLow */

/* condition: Overridden */

:: ((PressureP == TooLow) && OverriddenP) -> SafetyInjectionP = Off;

/* modes: TooLow */

/* condition: Not Overridden */

:: ((PressureP == TooLow) && (!OverriddenP)) -> SafetyInjectionP = On;

fi;

/*****************************************/

/* asserts for transition invariants */

/*****************************************/

/* (@T(Pressure = TooLow) WHEN (Block = Off)) => (SafetyInjection’ = On) */

assert((!(((PressureP == TooLow) && (!(Pressure == TooLow))) &&

(Block == Off))) || (SafetyInjectionP == On));

/*********************************************************************/

/* update each variable and mode class for this state change */

/*********************************************************************/

Block = BlockP; Overridden = OverriddenP;

Reset = ResetP; SafetyInjection = SafetyInjectionP;

WaterPres = WaterPresP; Pressure = PressureP;

}

od /* end of main processing loop */

}



MODEL CHECKING 65

A.3. SMV code for safety injection

MODULE main

VAR

Block : {Off, On};

Reset : {Off, On};

WaterPres : 0..2000;

Pressure : {TooLow, Permitted, High};

Overridden : boolean;

SafetyInjection : {Off, On};

DEFINE

Low := 900;

Permit := 1000;

ASSIGN

init(Block) := Off;

init(Reset) := On;

init(WaterPres) := 14;

init(Overridden) := 0;

init(SafetyInjection) := On;

init(Pressure) := TooLow;

next(Block) := {Off, On};

next(Reset) := {Off, On};

next(WaterPres) := 0..2000;

next(Pressure) :=

case

Pressure = Permitted &

next(WaterPres) < Low & !(WaterPres < Low) : TooLow;

Pressure = Permitted &

next(WaterPres) >= Permit & !(WaterPres >= Permit) : High;

Pressure = TooLow & next(WaterPres) >= Low &

!(WaterPres >= Low) | (Pressure = High &

next(WaterPres) < Permit & !(WaterPres < Permit)): Permitted;

1 : Pressure;

esac;

next(Overridden) :=

case

Pressure = TooLow & next(Block) = On &

Block = Off & Reset = Off |

(Pressure = Permitted & next(Block) = On &

Block = Off & Reset = Off) : 1;

Pressure = TooLow & next(Reset) = On & Reset = Off |

(Pressure = Permitted & next(Reset) = On & Reset = Off) |

next(Pressure) = High & !(Pressure = High) |

(next(Pressure) = TooLow | next(Pressure) = Permitted) &

!(Pressure = Permitted | Pressure = TooLow) : 0;

1: Overridden;

esac;

next(SafetyInjection) :=

case

next(Pressure) = High | next(Pressure) = Permitted |

(next(Pressure) = TooLow & next(Overridden)) : Off;

next(Pressure) = TooLow & !next(Overridden) : On;

esac;



66 BHARADWAJ AND HEITMEYER

TRANS

((next(WaterPres) - WaterPres >= 1 & next(WaterPres) - WaterPres <= 10 |

WaterPres - next(WaterPres) >= 1 & WaterPres - next(WaterPres) <= 10) &

next(Block) = Block & next(Reset) = Reset) |

(next(WaterPres) = WaterPres & !(next(Block) = Block) &

next(Reset) = Reset) |

(next(WaterPres) = WaterPres & next(Block) = Block &

!(next(Reset) = Reset))

SPEC

AG((Reset = On & !(Pressure = High)) -> !Overridden)

SPEC

AG((Reset = On & Pressure = TooLow) -> SafetyInjection = On)

SPEC

AG((Block = Off & Pressure = TooLow) -> SafetyInjection = On)

SPEC

AG((!(Pressure = TooLow) & Block = Off) ->

AX(Pressure = TooLow -> SafetyInjection = On))

Notes

1. The dependency setD does not distinguish variable dependencies in the old state from variable dependencies
in the new state. For example,(ri, rj) ∈ D implies that the parameters ofr′i includerj or r′j or bothrj
andr′j . Thus,D differs from the dependency setDri defined in (Heitmeyer, Kirby and Labaw, 1997), which

distinguishes old state dependencies from new state dependencies.

References

Alspaugh, T. A., Faulk, S. R., Britton, K. H., Parker, R. A., Parnas, D. L. and Shore, J. E. 1992.Software
requirements for the A-7E aircraft. Technical Report NRL-9194, Naval Research Lab., Wash., DC.

Atlee, J. M. and Buckley, M. A. 1996. A logic-model semantics for SCR specifications. InProc. Int’l Symposium
on Software Testing and Analysis.

Atlee, J. M. and Gannon, J. 1993. State-based model checking of event-driven system requirements.IEEE Trans.
Softw. Eng., 19(1):24–40.

Berry, G. and Gonthier, G. 1992. The Esterel synchronous programming language: design, semantics, imple-
mentation.Science of Computer Programming, 19.

Bharadwaj, R. and Heitmeyer, C. 1997. Verifying SCR requirements specifications using state exploration. In
Rance Cleaveland and Daniel Jackson, editors,Proc. First ACM SIGPLAN Workshop on the Automated Analysis
of Software, ACM, Paris, France, pages 9–23.

Bryant, R. E. 1986. Graph-based algorithms for Boolean function manipulation.IEEE Trans. on Computers,
8(C-35):677–691.

Bryant, R. E. 1992. Symbolic Boolean manipulation with ordered binary-decision diagrams.ACM Computing
Surveys, 24(3):293–318.

Chan, W., Anderson, R. J., Beame, P., Burns, S., Modugno, F., Notkin, D. and Reese, J. D. 1998. Model checking
large software specifications.IEEE Trans. on Softw. Eng., 24(7).

Chandy, K. M. and Misra, J. 1988.Parallel Program Design – A Foundation. Reading, MA: Addison-Wesley.
Clarke, E., Grumberg, O., and Long, D. 1994. Model checking and abstraction. InProc., Principles of

Programming Languages (POPL), 1994.
Clarke, E.M., Emerson, E. and Sistla, A. 1986. Automatic verification of finite state concurrent systems using

temporal logic specifications.ACM Trans. on Prog. Lang. and Systems, 8(2):244–263.
Clarke, E.M. and Kurshan, R.P. 1996. Computer-aided verification.IEEE Spectrum, pages 61–67.
Courtois, P.-J. and Parnas, D.L. 1993. Documentation for safety critical software. InProc. 15th Int’l Conf. on

Softw. Eng. (ICSE ’93), pages 315–323, Baltimore, MD.



MODEL CHECKING 67

Dams, D. and Gerth, R. 1997. Abstract interpretation of reactive systems.ACM Trans. on Prog. Lang. and
Systems, pages 111–149.

Dijkstra, E.W. 1976.A Discipline of Programming. Prentice-Hall.
Dill, D.L. Drexler, A.J., Hu, A.J. and Yang, C.H. 1992. Protocol verification as a hardware design aid. InProc.

IEEE Int’l Conference on Computer Design: VLSI in Computers and Processors, pages 522–525.
Easterbrook, S. and Callahan, J. 1997. Formal methods for verification and validation of partial specifications: A

case study.Journal of Systems and Software.
Faulk, S.R., Brackett, J., Ward, P. and Kirby, Jr., J. 1992. The CoRE method for real-time requirements.IEEE

Software, 9(5):22–33.
Faulk, S.R., Finneran, L., Kirby, Jr., J., Shah, S. and Sutton, J. 1994. Experience applying the CoRE method to

the Lockheed C-130J. InProc. 9th Annual Conf. on Computer Assurance (COMPASS ’94), Gaithersburg, MD,
pages 3-8.

Godefroid, P. 1990. Using partial orders to improve automatic verification methods. InProceedings of the 2nd
International Workshop on Computer-Aided Verification, pages 176–185.

Graf, S. 1994. Characterization of a sequentially consistent memory and verification of a cache memory by
abstraction. InProc. Computer Aided Verification.

Graf, S. and Loiseaux, C. 1993. A tool for symbolic program verification and abstraction. InProc. Computer
Aided Verification, pages 71–84.

Heimdahl, M.P.E. and Leveson, N. 1996. Completeness and consistency in hierarchical state-based requirements.
IEEE Transactions on Software Engineering, 22(6):363–377.

Heitmeyer, C., Kirby, J., Labaw, B., Archer, M. and Bharadwaj, R. 1998. Using abstraction and model checking
to detect safety violations in requirements specifications.IEEE Trans. on Softw. Eng., 24(11).

Heitmeyer, C.L., Jeffords, R.D. and Labaw, B.G. 1996. Automated consistency checking of requirements
specifications.ACM Transactions on Software Engineering and Methodology, 5(3):231–261.

Heitmeyer, C., Bull, A., Gasarch, C. and Labaw, B. 1995. SCR*: A toolset for specifying and analyzing require-
ments. InProc. 10th Annual Conf. on Computer Assurance (COMPASS ’95), pages 109–122, Gaithersburg,
MD.

Heitmeyer, C., Kirby, J. and Labaw, B. 1997. Tools for formal specification, verification, and validation of
requirements. InProc. 12th Annual Conf. on Computer Assurance (COMPASS ’97), Gaithersburg, MD.

Heitmeyer, C., Kirby, J. and Labaw, B. 1998. Applying the SCR requirements method to a weapons control panel:
An experience report. InProc. 2nd Workshop on Formal Methods in Software Practice (FMSP’98).

Heitmeyer, C., Kirby, J., Labaw, B. and Bharadwaj, R. 1998. SCR*: A toolset for specifying and analyzing
software requirements. InProc. Computer-Aided Verification, 10th Annual Conf. (CAV’98), Vancouver,
Canada.

Heitmeyer, C.L., Jeffords, R.D. and Labaw, B.G. 1999. Tools for analyzing SCR-style requirements specifications:
A formal foundation. Technical report, Naval Research Lab., Wash., DC. In preparation.

Heninger, K., Parnas, D.L., Shore, J.E. and Kallander, J.W. 1978. Software requirements for the A-7E aircraft.
Technical Report 3876, Naval Research Lab., Wash., DC.

Hester, S.D., Parnas, D.L. and Utter, D.F. 1981. Using documentation as a software design medium.Bell System
Tech. J., 60(8):1941–1977.

Holzmann, G.J. 1991.Design and Validation of Computer Protocols. Prentice-Hall.
Holzmann, G.J. 1997. The model checker SPIN.IEEE Trans. on Softw. Eng., 23(5):279–295.
Holzmann, G.J. and Peled, D. 1994. An improvement in formal verification. InProc. FORTE94.
Jackson, D. 1997. Model checking and requirements. Minitutorial,Third IEEE Intern. Symposium on Require-

ments Engineering (RE ’97).
Jackson, D., Jha, S., and Damon, C.A. 1994. Faster checking of software specifications using isomorphs. In

Proc., Principles of Programming Languages (POPL).
Jeffords, R. 1997. Translating SCR properties into LTL and CTL. Technical Memorandum 5540-293A:rdj.
Jeffords, R. and Heitmeyer, C. 1998. Automatic generation of state invariants from requirements specifications.

In Proc. Sixth ACM SIGSOFT Symp. on Foundations of Software Engineering.
Kaufmann, M. and Moore, J.S. 1997. An industrial-strength theorem prover based on Common Lisp.IEEE

Transactions on Software Engineering, 23(4):203–213.
Kirby, J. 1987. Example NRL/SCR software requirements for an automobile cruise control and monitoring

system. Technical Report TR-87-07, Wang Institute of Graduate Studies.
Kurshan, R. 1997. Formal verification in a commercial setting. InProc., Design Automation Conference.
Kurshan, R.P. 1994.Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach.

Princeton University Press.



68 BHARADWAJ AND HEITMEYER

Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A. and Bensalem, S. 1995. Property preserving abstractions for the
verification of concurrent systems.Formal Methods in System Design, 6:1–35.

Lutz, R.R. and Shaw, H.Y. 1997. Applying the SCR* requirements toolset to DS-1 fault protection. Technical
Report JPL-D15198, Jet Propulsion Laboratory, Pasadena, CA.

Manna, Z. and Pnueli, A. 1991.The Temporal Logic of Reactive and Concurrent Systems. Springer-Verlag.
McMillan, K.L. 1993. Symbolic Model Checking. Kluwer Academic Publishers.
Meyers, S. and White, S. 1983. Software requirements methodology and tool study for A6-E technology transfer.

Technical report, Grumman Aerospace Corp., Bethpage, NY.
Miller, S. 1998. Specifying the mode logic of a flight guidance system in CoRE and SCR. InProc. 2nd Workshop

on Formal Methods in Software Practice (FMSP’98).
Owre, S., Rushby, J., Shankar, N. and von Henke, F. 1995. Formal verification for fault-tolerant architectures:

Prolegomena to the design of PVS.IEEE Transactions on Software Engineering, 21(2):107–125.
Parnas, D.L., Asmis, G.J.K. and Madey, J. 1991. Assessment of safety-critical software in nuclear power plants.

Nuclear Safety, 32(2):189–198.
Parnas, D.L. and Madey, J. 1995. Functional documentation for computer systems.Science of Computer

Programming, 25(1):41–61.
Probst, S.T. 1996.Chemical Process Safety and Operability Analysis using Symbolic Model Checking. PhD

thesis, Carnegie-Mellon University, Department of Chemical Engineering, Pittsburgh, PA.
Sreemani, T. and Atlee, J.M. 1996. Feasibility of model checking software requirements. InProc. 11th Annual

Conference on Computer Assurance (COMPASS ’96), Gaithersburg, MD.
Sutton, J. 1997. Personal communication.
Valmari, A. 1990. A stubborn attack on state explosion. InProceedings of the 2nd International Workshop on

Computer-Aided Verification, pages 156–165.
Weiser, M. 1984. Program slicing.IEEE Transactions on Software Engineering, SE-10(4):352–357.


